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Abstract—An analysis for hydrodynamically and thermally fully developed heat transfer in a circular

tube with variable circumferential heat flux is presented. The results allow prediction of temperature

variations when the tube is heated uniformly in the axial direction and non-uniformly around its

perimeter. A surprising conclusion is that the effects of circumferential heat flux variation in turbulent

flow are sometimes more pronounced than in laminar flow. An example shows the striking importance
of these effects.

NOMENCLATURE
AT, profile constant;
au, by, Fourier coefficients;
Cp, specific heat at constant pressure;

E, (1 + en/a);
7 Fanning friction factor +/(7w)/}pu’;

F(f), heat flux variation about the mean;

g(r, 8), temperature difference function;

h, convective heat transfer conductance,
q"[dtw;

k, thermal conductivity;

n, harmonic index;

Nu,, mean Nusselt number, 2hr,/k;

Pr, Prandtl number;

q’, heat flux;

r, radius co-ordinate;

o rov/(rulp)lv;

Yo, tube radius;

r*, rfre;

Ry, radial eigenfunction;

Re, Reynolds number, 2Unro/v;

Sn, wall temperature functions;

1, temperature;

u, velocity;

Vs distance from wall;

¥t y/(tw/p)v.

Greek symbols
At, temperature difference above mean;
a, thermal diffusivity, k/pCp;

t Associate Professor.

€H, eddy diffusivity for heat;

€M, eddy diffusivity for momentum;

K, profile constant;

s viscosity;

v, kinemetic viscosity, p/p;

Ps density;

Tuw, wall shear stress;

6, angular co-ordinate.
Subscripts

0, average;

m, mixed mean;

n, harmonic;

w, wall.

INTRODUCTION

THE circular tube is a very common geometry
employed in nuclear reactors, and often in this
application the heat flux to the coolant varies
considerably both along the tube and around its
perimeter. These variations influence the Nusselt
number, and consequently are of considerable
practical importance. The effects of axial heat
flux variation are usually rather small, except
where very rapid changes occur [1]. However,
the influence of circumferential variations is
much more pronounced, as a previous laminar
flow analysis indicated {2]. In this paper we
report an analysis of the turbulent flow problem,
in which the circumferential flux distribution is
found to be surprisingly important. The laminar
analysis is included here for completeness.
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FORMULATION

We consider the case of hydrodynamically
fully developed flow of a fluid having constant
properties, and seek the thermally fully developed
temperature field for flow in a circulat tube with
a prescribed wall heat flux. This flux can have any
arbitrary circumferential distribution, but is
invariant in the flow direction. The eddy
diffusivity concept is useful here, and we shall
base our analysis on the key assumption that
the diffusivities for heat in the radia/ and
circumferential directions are identical. This is
somewhat like an isotropy idealization, and is
unquestionably the assumption most subject to
debate. However, no other idealization seems
more appropriate in view of the unavailability
of pertinent experimental data. Under these
idealizations the differential equation governing
the temperature field may be obtained in the
usual way from a simple energy balance,
and is

) ot
Lty =u P {la)

where for brevity we have put

1 o o
LO=5 *a‘r[’(“ + en) a}}

] o ¢
. 2 5 {(a + en) @9} {1b)

This equation is elliptic in r—6, and the associated
boundary condition is that the heat flux is
prescribed,

~

6 = (k g) (prescribed).  (22)
rer,

We may represent the prescribed heat flux in the
form

gu(8) = q, -+ F() (2b)

where

[i7 F(6) dé = 0 (20)

Since our interest is with the developed tempera-
ture field, we will work only with the temperature
difference above the mean fluid temperature,
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which can be determined from an overall
energy balance. We denote
t(r, x, 9) = I {X) -4 At (r, 9)- 3)
Equation (1) then becomes
dtm
LA = u ", (4)

Since the heat input is constant in the axial
direction, dfs/dx is constant. We next split the
temperature difference into two parts,

At(r, 0) = Aty(r) -+ g(r, 0). (5)

The function Ar(r) is taken to be the solution of
{4) which satisfies the boundary condition

dLSI‘O 1t

and is therefore the temperature field associated
with the average heat flux ¢/ . It is a particular
solution, which takes care of the inhomogeneous
term. The function g{r, #) then does not con-
tribute to bulk temperature rise, and satisfies the
simpler elliptic equation

L{g) = 0,

The boundary condition on g(r, §) becomes

(%) -
k ('@r)rsro = F(8).

It is indeed interesting that g is independent of
the velocity field (but it does depend on the
eddy diffusivity distribution).

We consider cases where the function F(8) has
a Fourier expansion, and put

{6)

{7)

(8)

w
F() = 3 (ansinnf -+ bycosnb). {9)

n=1
The solution for g(r, §) may then be obtained in
the form

e}

g(r, ) = gz Ru(r) (ag sin nf -+ by cos n8),

n=1

(10
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We now introduce the dimensionless quantities
E(r*) = (1 + eg/a) (11a)
(11b)

r* = rir,

and, using (7), find that the functions Rn(r*)
must satisfy

d dRy E
e * er— —-— 3 — ool
e (r Edr*) = Ry=10 (12)
with the boundary conditions

R(H=1 (13a)

R,(0) = 0, (for regular solutions). (13b)

We assume that the solutions are in hand, and
denote

Sn == Ra(1). (14)

In uniform heat flux analyses it is customary to
define a Nusselt number, and in this case

Nup == (q. [Atow) 2rofk. (15)

Assuming that the Nusselt number is known, the
contribution of the function Az, to the local wall
temperature difference may be written as
Atow = Saq:’rg/k (] 63)

where
- So = 2[Nu,. (16b)

The local wall temperature corresponding to the
arbitrarily prescribed heat flux is therefore

18, %) — tin(%)

o
= 2‘3 [Sog, + ¥ Sulansinnb + by cos nf)].
=1
a7

We see that once the values of the S,’s have
been determined we can calculate the temperature
difference for any prescribed circumferential
heat flux.
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LAMINAR FLOW
The laminar solutions may be obtained by
setting E = 1.
One obtains

Ru(r®) = r*afn (18a)

from which

Sp=1n, n>0, (18b)
The Nusselt number for laminar flow in a circular
tube with constant heat flux is well known [3],

and is

Nu, = 48/11. (18¢)
Therefore, for laminar flow,
So == 11/24 = (+458. (18d)

Note that S, exceeds S, by more than a factor of
2! This shows the important influence of
circumferential heat flux variation on the
convection process.

TURBULENT FLOW
Although the velocity does not appear in the
differential equation of the Ry,’s (12), the eddy
diffusivity for heat is involved, and an appro-
priate representation must be employed. The
term E may be rewritten as

E._~.~.1+%Bf:—;fpr.

€)
In the present numerical solutions an expression
for the eddy diffusivity for momentum suggested
by Cess [4] was employed. This expression
represents a combination of a sublayer equation
due to van Driest {5] and a middle law suggested
by Reichardt [6], and is

en 1 «Xr r\?}2
Y=o - ()]

2T oo (2] T -

(20)
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with
A =26, (21a)
K = 04, (21b)
r} =rev(Tu/p)v = Re\/(f18).  (21c)

The friction factor appearing in (2lc) was
evaluated from the power-form expressions
listed below:*

£ = 0079 Re—9%,

5000 . Re <. 30000,  (22a)
[ = 0046 Re~02,
30 000 = Re < 1000 000. (22b)

Jenkins {7] calculated the diffusivity ratio
enfem, based on a very simple eddy model.
Jenkins’ results indicate that the ratio is less than
unity for Prandtl numbers around 0-7, but
measurements seem to indicate a ratio somewhat
in excess of unity. Sleicher and Tribus [8]
analysed the circular tube using Jenking
analysis adjusted by a multiplying factor to give
agreement with Sleicher’s own measurements at
the single Prandtl number of 0-7. Kays and
Leung [9] recently employed Jenkins' curves
with a smaller bumping factor, and obtained
results which are in better agreement with
subsequent experiments in this Prandtl number
range and are not bad at low Prandtl numbers.
In the present calculations at Prandtl numbers of
0-7 and below the Jenkins’ ratios were multiplied
by 1-15 to estimate ep/en (this is essentially the
procedure employed by Kays and Leung). At
high Prandt! numbers the sublayers become
controlling, and it does not make much difference
in heat transfer calculations what diffusivity
is employed outside the sublayers. The Cess
expression and a corresponding sublayer ex-
pression of Deissler [10] are quite similar, and
constants in the Deissler expression were basically
determined from high Prandtl number heat
transfer data using a heat transfer analysis which
assumed unity diffusivity ratio. The Deissler
diffusivity should therefore be interpreted as
thermal diffusivity for high Prandtl numbers.
Tt was felt that a reasonable procedure for the

1 In view of the other smiphfymg idealizations, these
expressions were deemed adequate.
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high Prandtl number calculations would be to
simply use the Cess expression, and a diffusivity
ratio of 1-15 and this was the method employed
for Pr =~ 3.

The radial temperature functions Rs{r*) for
n = | were obtained numerically on a Burroughs
220 digital computer. Equation {12) was reduced
to a pair of simultaneous first order differential
equations, and these were solved using a fourth-
order Adams predictor-corrector method {11}
The calculation was handled as an initial value
problem from the center. Since the diffusivity
function E is quite flat at the center, the turbulent
solutions behave like the laminar solutions, i.e.
R,(r*) behaves like r*7, This fact was used in
starting the integration procedure. which was
carried to the wall, The homogeniety of equation
(12) permits multiplication of any solution by a
constant, and the functions computed from the
integration could therefore be normalized to
make R (1) = 1. The integrations were per-
formed using eighty increments, distributed as
shown below:

0 1 - 10, 20 increments
10y - - 60, 20 increments
60 - y - .. 160, 20 increments
160 -7y + -1 r, . 20increments.

Convergence was checked by calculations using
twice as many increments. The most error
occurs at high Reynolds and Prandtl numbers,
where the results reported are converged within
I per cent. Below Pr — 100 the calculation is
accurate to better than 0-1 per cent. The calcula-
tion was also checked by computing the laminar
functions, and six-figure agreement was obtained
for the first five harmonics.

A typical diffusivity (£) distribution is shown
in Fig. 1. Note that it varies only a little over
most of the flow. Typical radial functions as
normalized to give R(1)=-1 are shown in
Fig. 2. There is a marked similarity to the form
of laminar functions (18). It is interesting to
note that for Pr = O the turbulent radial func-
tions become identical with the laminar functions,
since E == 1 for either case.

The values of So(Re, Pr) were computed from
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FiG. 1. A typical diffusivity distribution.

the Nusselt numbers given by Kays and Leung
(9). These calculations represent a self-consistent
treatment of fully developed turbulent heat
transfer in a circular tube with uniform axial
flux, and the diffusivity assumptions which they
employed are basically those employed in the
present calculations. The values are shown in
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FiG. 2. Typical radial eigenfunctions.

The values of Su(Re,Pr) were computed for the
first five harmonics for a series of Reynolds and
Prandtl number, and the results are summarized
in Table 1. A partial presentation of these

Fig. 3, and included in Table 1.

functions is shown in Fig. 4.

Table 1. Circumferential heat flux functions S.(Re, Pr)

Pr n Re
104 3 x 104 108 3 x 10% 108
0 0 0-318 0-302 0-293 0-288 0-283
1 1-000 1-000 1-000 1-000 1-000
2 0-500 0-500 0-500 0-500 0-500
3 0-333 0-333 0-333 0-333 0-333
4 0-250 0-250 0-250 0-250 0-250
5 0-200 0-200 0-200 0-200 0-200
0-001 0 0-318 0-302 0-293 0-282 0-246
1 1-000 1-000 0-999 0-974 0-901
2 0-500 0-500 0-499 0-491 0-469
3 0-333 0-333 0-333 0-329 0-320
4 0-250 0-250 0-250 0-248 0-244
5 0-200 0-200 0-200 0-199 0-196
0-003 0 0-318 0-302 0-282 0-246 0-156
1 0-999 0-994 0-957 0-831 0-473
2 0-500 0-498 0-484 0-435 0-279
3 0-333 0-332 0-325 0-299 0-203
4 0-250 0-249 0-245 0-229 0-170
5 0-200 0200 0-197 0-186 0-145
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Table 1.—continued

Pr n Re
10* 310t 10° 3 < 10® 108
0-01 0 0-311 0-286 0-224 0-141 0-0655
1 0991 0-952 0-733 0-409 0-161
2 0-497 0-483 0-397 0-246 0-109
3 0-332 0-325 0-279 0-186 0-0894
4 0-249 0-245 0217 0-153 0:0784
5 0-199 0-197 0-178 0132 0-0710
0-03 0 0-290 0-220 0-126 0-0618 0-0248
1 0-923 0-699 0-348 0-145 0-0535
2 0-473 0-383 0-214 0-0986 0-0402
3 0-302 0-272 0-165 0-0816 0-0353
4 0-243 0-213 0-138 0-0720 0-0326
5 0-195 0-176 0-120 0-0654 0-0307
07 0 0:0631 0-0283 0:0112 0-00465 0-00174
1 0121 0-0490 0-0180 0-00721 0-00275
2 0-0900 0-0378 0:0141 0-00578 0-00226
3 0-0784 0-0336 0-0127 0-00525 0-00209
4 0-0716 0-0313 0:0119 0-00496 0-00199
5 0-0668 0-0297 0-0114 0-00477 0-00193
3 0 0-0325 0-0134 0-00495 0-00194 0-0,690
i 0-0448 0-0178 0-00629 0-00246 0-0,902
2 0-0379 0-0151 0-00540 0-00213 0:0,791
3 0-0353 0-0142 0-00508 0-00201 0-0,751
4 0-0338 0:0137 0:00490 0-00194 0-0,728
5 0-0327 0-0133 0:00479 0-00190 0-0,714
10 0 0-0201 0-00806 0-00290 0-00111 0-0,383
1 0-0239 0-00931 0-00322 0-00123 0-0,438
2 0-0218 0-00853 0:00296 0-00113 0-0,405
3 0-0211 0-00824 0-00286 0-00110 0-0,393
4 0-0206 0-00808 0-00281 0-00108 0-0,386
5 0-0203 0-:00797 0-00277 0-00107 0-0,382
30 0 0-0142 0-00553 0-00194 0-0,727 0-0,248
1 0-0151 0-00582 0:00199 0:0,751 0-0,261
2 0-0144 0-00556 0-00190 0-0;,718 0-0,250
3 0-0141 0-00546 0-00187 0-0,706 0-0,246
4 0-0140 0-00541 0-00185 0-0,699 0-0,244
5 0-0139 0-00537 0-00184 0-0,695 0:0,242
100 0 0-00975 0-00384 0:00132 0-0,496 0-0,167
1 0-00994 0-00383 0:00130 0:0,486 0-0,166
2 0-00973 0:00375 0-00127 0-0,476 0:0,163
3 0-00965 0-00372 0-00126 0-04472 00,162
4 0-00960 0-:00370 0-00126 0-0,470 0:0,161
5 0-00957 0-00369 0-00125 0-0,469 0-0,16!
1000 0 0-00527 0-00205 0-0,706 0-04265 0-0,885
1 0-00513 0-00198 0-0;667 0-05248 0-0,841
2 0-00511 0-00197 0-0;665 0-0;247 0-0,838
3 0-00510 0-00196 0-0,664 0-03247 0-0,837
4 0-00509 0-00196 0-0,663 0:04247 00,836
5 0-00509 0:00196 0-0,663 0:04247 0-0,836
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Fi1G. 4. Periodic heat flux functions.
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DISCUSSION OF RESULTS

There are a number of striking features ex-
hibited by the solutions. It should first be noted
that the behavior at low Prandtl numbers and
low Reynolds numbers, or whenever the
diffusivity function E is small, is asymptotically
that of the laminar functions. The laminar
functions S, decrease with n like 1/n, but the
turbulent functions do not decrease as rapidly.
In fact, for Pr = 30 there is very little difference
between S; and S;. The higher harmonics are
therefore of more importance in turbulent flow
than in laminar flow, particularly at high Prandtl
and Reynolds numbers, i.e. whenever E is
large over most of the flow.

Although the circumferential functions for
low Prandt] number turbulent flow are essentially
the laminar functions, the mean functions
S, differ. This is due to the fact that the circum-
ferential functions are independent of the
velocity profile, while the Nusselt number for
uniform flux does depend on velocity. It is rather
surprising to observe that the ratio S;/S,, which
in a sense is a measure of the relative importance
of the first harmonic and the average, is actually
greater for turbulent flow with Pr = 0 than in
laminar flow! This means that for a given heat
flux distribution the circumferential effects will
be more pronounced in turbulent low Prandtl
number flow than in laminar flow. Of equally
striking importance is the observation that,
except at very high Prandtl numbers, S, is
larger than S,, which means that the effects in a
tube with marked circumferential variation in the
heat flux will be quite important.

EXAMPLE
As an illustration let us consider gas flow in a
reactor tube at Re = 100 000, and suppose that
the circumferential heat flux distribution is
q"'(6) =q. (1 + 0-5cos 6). (23)

Using (17), we find that the local temperature
difference is given by

ty — I
Gk =S+ 05S;,cos 6 (24a)
= 0-0112 (1 4 0-80 cos 6). (24b)
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Note that while there is a 50 per cent increase
in heat flux there is an 80 per cent increase in
temperature difference. This could pose serious
problems if not properly considered. To empha-
size this, suppose we had simply used the local
heat flux, together with the uniform flux Nusselt
number, to estimate the peripheral temperature
variation. We would have obtained

tw — tm
——— = 001121 +0-5cos 8. (24c
gk I+ ). (24¢c)
PREDICTED FROM
0002 PRESENT RESULTS
15 .
7' — :
o5 Ge
0-016 0  180° 360°
)
oo |
t-Im
Qo1 'k PREDICTED FROM
0008 | ocAL FLUX USING
UNIFORM FLUX
NUSSELT NUMBER
0-004] Re=100,000
Pr=07
o [ t 1 1. I
0° 3 60 90° 120° 130"
[

FiG. 5. A typical example.

These two predictions are compared in Fig. 5.
The importance of considering the influence of
the flux distribution on the heat transfer
coefficient, as reflected in the functions Sy,
should be evident.

CONCLUDING REMARKS

The present analysis predicts a rather sur-
prising and important effect of circumferential
heat flux variation on heat transfer in turbulent
flow, particularly at low Prandtl numbers.
However, the average temperature difference,
computed from the average heat flux, is identical
with that predicted for no peripheral flux
variation. The analysis is based on the idealiza-
tion that the eddy diffusivities for heat in the
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radial and circumferential directions are identical.
Some experimental evaluation of this hypothesis
would seem appropriate.
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Résumé—Cet article présente une étude des échanges thermiques, en régimes thermique el hydro-
dynamique permanents, dans un tube circulaire avec flux de chaleur périphérique variable. Les
résultats permettent d’évaluer les variations de température quand on chauffe le tube uniformément
suivant 1’axe et de fagon variable suivant son périmétre. Une conclusion surprenante a été notée:
I’effet de la variation du flux de chaleur pariétal est quelquefois moins important en écoulement tur-
bulent qu'en écoulement laminaire. Un exemple montre I'importance frappante de ces effets.

Zusammenfassung—Der Wirmeiibergang in hydrodynamisch und thermisch ausgebildeter Stromung

in einem Kreisrohr mit verdnderlichem Wirmefluss am Umfang wird analysiert. Die Ergebnisse

gestatten die Bestimmung von Temperaturdnderungen bei gleichmaéssiger Beheizung in Achsialrich-

tung und ungleichméssiger Beheizung iiber den Umfang. Als erstaunliche Schiussfolgerung ergibt sich,

dass eine Anderung des Wirmestromes iiber den Umfang bei turbulenter Strémung manchmal

grosseren Einfluss zeigt als bei Laminarstromung. Ein Beispiel verdeutlicht die Wirkung dieser
Einfliisse.

Anroranua—/lacres ananie ;1n4;)0‘1111{(1\11xq9('}\x1 H TEPMO,ITHAMUYCCKH 110JIHOCTLIO PABBUTOIG

TEILIOOGMeHa B KpYTIIoii tpyde ¢ mepemMeHHBIM {10 TIepUMeTpY TeTIZIOBRM 1I0TOKOM . PesyIbTaTLl

TIOBBOJIAIOT PACCUUTATH M3MEHPHIA TeMHEDATYPBL LIPIL PABHOMEPHOM 11aTpPeBe T(0 OCH 1 Hepan-

HOMEpHOM HATrpeBe 110 mepumerpy. CllellaH HeOMUIAHBLIE BBIBO/L O TOM, YTO BINAHHC M3MeH -

HMil 110 IepuMeTpy TEervIOBOTO IIOTOKA NpPH TYpyOV.TeHTHOM TeYeHNM CTAHOBHTUH HHOMAH

(oee BHAUHTEILHLIM, deM Mpi JamMuHapHoM. lIpusogurca mpumep, HWIATIOCTPHD VIOLIHIT
GONBIIIOe 3HAYEHMe HTOTO BITUHHHS,



