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TURBULENT HEAT TRANSFER IN A CIRCULAR TUBE 

WITH VARIABLE CIRCUMFERENTIAL HEAT FLUX 

W. C. REYNOLDS? 

Mechanical Engineering Department, Stanford University, Stanford, California 

(Received 21 August 1962 and in revised form 14 December 1962) 

Abstract-An analysis for hydrodynamically and thermally fully developed heat transfer in a circular 
tube with variable circumferential heat flux is presented. The results allow prediction of temperature 
variations when the tube is heated uniformly in the axial direction and non-uniformly around its 
perimeter. A surprising conclusion is that the effects of circumferential heat flux variation in turbulent 
flow are sometimes more pronounced than in laminar flow. An example shows the striking importance 

of these effects. 
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NOMENCLATURE 

profile constant; 
Fourier coefficients; 
specific heat at constant pressure; 
(1 + cH/a); 

Fanning friction factor ~(T~)/~&; 
heat flux variation about the mean; 
temperature difference function; 
convective heat transfer conductance, 
q”lAtw; 
thermal conductivity; 
harmonic index; 
mean Nusselt number, 2hro/k; 
Prandtl number ; 
heat flux ; 
radius co-ordinate; 
r44P)Iv; 
tube radius ; 
r/r0; 
radial eigenfunction; 
Reynolds number, 2Umro/v; 
wall temperature functions; 
temperature; 
velocity ; 
distance from wall; 
Yl/&Jlf)lV. 

eddy diffusivity for heat; 
eddy diffusivity for momentum; 
profile constant; 
viscosity; 
kinemetic viscosity, p/p; 
density; 
wall shear stress ; 
angular co-ordinate. 

Subscripts 
0, average ; 
m, mixed mean ; 
n, harmonic; 
W, wall. 

INTRODUCTION 

THE circular tube is a very common geometry 
employed in nuclear reactors, and often in this 
application the heat flux to the coolant, varies 
considerably both along the tube and arotind its 
perimeter. These variations influence the Nusselt 
number, and consequently are of considerable 
practical importance. The effects of axial heat 
flux variation are usually rather small, except 
where very rapid changes occur [I]. However, 
the influence of circumferential variations is 
much more pronounced, as a previous laminar 
flow analysis indicated [2]. In this paper we 
report an analysis of the turbulent flow problem, 
in which the circumferential flux distribution is 
found to be surprisingly important. The laminar 
analysis is included here for completeness. 

Greek symbols 
At, temperature difference above mean; 
a, thermal diffusivity, k/pCp; 

t Associate Professor. 
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FORMULATION 

We consider the case of hydrodynamically 
fully developed Aow of a fluid having constant 
properties, and seek the thermally fully developed 
temperature field for flow in a circular tube with 
a prescribed wall heat flux. This flux can have any 
arbitrary circumferential distribution, but is 
invariant in the Bow direction. The eddy 
diffusivity concept is useful here, and we shall 
base our analysis on the key assumption that 
the diffusivities for heat in the radian and 
~~rc~~~~e~tjal directions are identical. This is 
somewhat iike an isotropy ideahzation, and is 
unquestionably the assumption most subject to 
debate. However, no other idealization seems 
more appropriate in view of the unavailability 
of pertinent experimental data. Under these 
idealizations the differential equation governing 
the temperature field may be obtained in the 
usual way from a simple energy balance, 
and is 

where for brevity we have put 

This equation is elliptic in r-8, and the associated 
boundary condition is that the heat flux is 
prescribed, 

(prescribed). Pa) 

We may represent the prescribed heat flux in the 
form 

qZ(f?) = q; + F(O) (2b) 

where 

Sfi” F(B) d0 = 04 PC) 

Since our interest is with the developed tempera- 
ture field, we will work only with the temperature 
difference above the mean fluid temperature, 

which can be determined from an overall 
energy balance. We denote 

1 (P, s, 8) = trr* (x) -i- A?it (I’, 8). 13) 

Equation (1) then becomes 

Since the heat input is constant in the axial 
direction, dt,ldx is constant. We next split the 
temperature difference into two parts, 

Ar(r, 0) = At,(r) -+- g(r, 0). (5) 

The function At,(r) is taken to be the solution of 
(4) which satisfies the boundary condition 

(6) 

and is therefore the temperature field associated 
with the average heat flux 9:‘. It is a particular 
solution, which takes care of the inhomogeneous 
term. The function g{r, @) then does not con- 
tribute to bulk temperature rise, and satisfies the 
simpler elliptic equation 

L(g) -= 0. (7) 

The boundary condition on g(r, 0) becomes 

=: F(d). 

It is indeed interesting that g is independent of 
the velocity field (but it does depend on the 
eddy di~usivity distributions. 

We consider cases where the function F(B) has 
a Fourier expansion, and put 

The solution for g(r, 8) may then be obtained in 
the form 
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We now introduce the dimensionless quantities LAMEVAR FLOW 
The laminar solutions may be obtained by 

E(r*) = (1 + <z&j (lla) settingE = 1. 
One obtains 

r* = r/r* (lib) 
&{r*) = r*“]n W4 

and, using (71, find that the functions R&*) 
must satisfy from which 

d 

---- ( 

d& -&+O 
S, = l/n, n > 0. (lgb) 

dr* 
r’E dF 

r* 112) 
The Nusselt number for laminar Aow in a circular 

with the boundary conditions tube with constant heat flux is well known [3], 
and is 

R:(l) = 1 (13a) .A& = 48111. (lg@ 

MO) = 0, (for regular solutions)- (13b) Themfore 
f 
for faminar flow 

, 

We assume that the solutions are in hand, and 
denote 

So = 11124 = 0*458. (lgd) 

s, = R,(l). (14) Note that S, exceeds So by more than a factor of 
2! This shows the important influence of 

In uniform heat flux analyses it is customary to circu~erential heat flux variation on the 

define a Nusselt number, and in this case convection process. 

05) TURBULENT FLOW 

Assuming that the Nusselt number is known, the Although the velocity does not appear in the 

contribution of the function At, to the local wall differential equation of the R%‘s (12), the eddy 

temperature difference may be written as difIusivity for heat is involved, and an appro- 
priate representation must be employed. The 

Atow = Sog~rr,/k (1 da) term E may be rewritten as 

where 

The local wah temperature corresponding to the 
In the present numerical solutions an expression 

arbitrariiy prescribed heat flux is therefore 
for the eddy diffusivity for momentum suggested 
by Cess [4] was employed. This expression 
represents a combination of a sublayer equation 
due to van Driest [S] and a middle law suggested 

= F [S& -t $i S&z% sin n6 + b, cos no)]. 
by Reichardt [6], and is 

EM 1 
(17) -;=2 1-t 

( 
5!jY[l_ (!JJ2 

We see that once the values of the &‘s have 
been determined we can calculate the temperature 
difference for any prescribed circumferential 

fl+2~~~]~[1 -exp(-l~$)]‘~--~ 

beat fYlux. (201 
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with 

A i = 26, Gw 

K -:- 0.4, C21b) 

r j ~=r0tji(7p0/p)/tJ = ~e~/{~~8). r/ WC) 

The friction factor appearing in (21~) was 
evaluated from the power-form expressions 
listed below :t 

f z O-079 Re-Q*“5, 

5000 -: Re 5; 30 000, 

,f’- 0.046 Re--“‘2, 

(22a) 

30 000 2-c Re 5~: 1 000 000, (22b) 

Jenkins [7] calculated the diffusivity ratio 
EN/EM, based on a very simple eddy model. 
Jenkins’ results indicate that the ratio is less than 
unity for Prandtl numbers around 0.7, but 
measurements seem to indicate a ratio somewhat 
in excess of unity. Sleicher and Tribus [8] 
analysed the circular tube using Jenkins’ 
analysis adjusted by a multiplying factor to give 
agreement with Sleicher’s own measurements at 
the single Prandtl number of 0.7. Kays and 
Leung [9] recently employed Jenkins’ curves 
with a smaller bumping factor, and obtained 
results which are in better agreement with 
subsequent experiments in this Prandtt number 
range and are not bad at low Prandtl numbers. 
In the present calculations at Prandtl numbers of 
0.7 and below the Jenkins’ ratios were multiplied 
by 1.15 to estimate EH/QI (this is essentially the 
procedure employed by Kays and Leung). At 
high Prandtl nuinbers the sublayers become 
controlling, and it does not make much difference 
in heat transfer calculations what diffusivity 
is employed outside the sublayers. The Cess 
expression and a corresponding sublayer ex- 
pression of Deissler [lOI are quite similar, and 
constants in the Deissler expression were basically 
determined from high Prandtl number heat 
transfer data using a heat transfer analysis which 
assumed unity diffusivity ratio. The Deissler 
diffusivity should therefore be interpreted as 
thermal diffusivity for high Prandtl numbers. 
It was felt that a reasonable procedure for the 

t in view of the o&r ~~~~lif~i~~ idealizations, these 
expressions were deemed adequate. 

high Prandtl number calculations would be to 
simply use the Cess expression, and a diffusivity 
ratio of I.15 and this was the method employed 
for Pr :-- 3. 

The radial temperature functions R~~(~*) for 
n .I:-- I were obtained numerically on a Burroughs 
220 digital computer. Equation (12) was reduced 
to a pair of simultaneous first order differential 
equations. and these were solved using a fourth- 
order Adams predictor-corrector method [ 11 j. 
The calculation was handled as an initial value 
problem from the center. Since the diffusivity 
function E is quite flat at the center, the turbulent 
solutions behave like the laminar solutions, i.e. 
R,(v*) behaves like r*n. This fact was used in 
starting the integration procedure. which was 
carried to the wall. The homogeniety of equation 
( 12) permits multiplication of any solution by a 
constant. and the functions computed from the 
integration could therefore be normalized to 
make R,: (I) y:- 1. The integrations were per- 
formed using eighty increments, distributed as 
shown below : 

0 ?’ 1. IO. 20 increments 

IO ,V -- . . 60. 20 increments 

60 p + . . 160, 20 increments 

160 1 y t- 1 r,; . 20 increl~ents~ 

Convergence was checked by calculations using 
twice as many increments. The most error 
occurs at high Reynolds and Prandtl numbers, 
where the results reported are converged within 
1 per cent. Below Pr 7: 100 the calculation is 
accurate to better than 0.1 per cent. The caicula- 
tion was also checked by computing the laminar 
functions, and six-figure agreement was obtained 
for the first five harmonics. 

A typical diffusivity (E) distribution is shown 
in Fig. 1. Note that it varies only a little over 
most of the flow. Typical radial functions as 
normalized to give Rlf 1) =:. i are shown in 
Pig. 2. There is a marked similarity to the form 
of laminar functions (18). It is interesting t0 
note that for Pr = 0 the turbulent radial func- 
tions become identical with the faminar functions, 
since E = I for either case. 

The values of &(Re, Pr) were computed from 
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1 I 7 fOt8 0.8 0.4 ‘0.2 0 Y+gSO Y+=lSO ~‘/~ 

0 
FIG. 1. A typical diffusivity distribution. 

the Nusselt numbers given by Kays and Leung 
(9). These calculations represent a self-consistent 
treatment of fully developed turbulent heat 
transfer in a circular tube with uniform axial 
flux, and the diffusivity assumptions which they 
employed are basically those employed in the 
present calculations. The values are shown in 
Fig. 3, and included in Table 1. 

Re’ 100 OcIo O-018 

0.8 0.6 0.4 0.2 0 

Y+aSO Y’. 160 vi* 

FIG. 2. Typical radial eigenfunctions. 

The values of &(Re,Pr) were computed for the 
first five harmonics for a series of Reynolds and 
Prandtl number, and the results are summarized 
in Table 1. A partial presentation of these 
functions is shown in Fig. 4. 

Table 1. Circumferential heat flux functions S,(Re, Pr) 

Pr n Re 

104 3 x 10” 105 3 x 105 106 

0 0 
1 
2 
3 
4 
5 

OGOl 0 
1 
2 
3 
4 
5 

oGO3 0 
1 
2 
3 
4 
5 

0.318 0.302 0.293 0.288 0.283 
1GOO 1GOO 1GOO 1.000 1.000 
0.500 0.500 0.500 0.500 0.500 
0.333 0.333 0.333 0.333 0.333 
0.250 0.250 0.250 0.250 0.250 
0.200 0.200 0.200 0.200 0.200 

0.318 
1GOO 
0.500 
0.333 
0.250 
0.200 

0.302 

GE 
0.333 
0.250 
0.200 

0.293 0.282 0.246 
0.999 0.974 0901 
0.499 0.491 0.469 
0.333 0.329 0.320 
0.250 0.248 0.244 
0.200 0.199 0.196 

0.318 0.302 0.282 0,246 0.156 
0.999 0.994 0.957 0,831 0.473 
0.500 0.498 0.484 0.435 0.279 
0.333 0.332 0.325 0.299 0.203 
0.250 0.249 0.245 0.229 0.170 
0.200 0.200 0.197 0.186 0.145 
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Table 1 .-continued 

Re 

3 ‘, 104 loj 

0.01 0 
I 
2 
3 
4 
5 

0.03 0 
1 
2 
3 
4 
5 

0.7 0 
I 
2 
3 
4 
5 

3 0 
I 
2 
3 
4 
5 

10 0 
I 
2 
3 
4 
5 

30 0 
1 
2 
3 
4 
5 

100 0 
I 
2 
3 
4 
5 

1000 0 
1 
2 
3 
4 
5 

0.311 0.286 0.224 
0.991 0,952 0.733 
0,497 0.483 0.397 
0.332 0,325 0.279 
0.249 0,245 0.217 
0.199 0.197 0.178 

-__.._ 
0,141 
0.409 
0.246 
0.186 
0.153 
0.132 

0,290 0.220 0.1’6 0.0618 
0.923 0,699 0.348 0.145 
0.473 0.383 0.214 0.0986 
0,302 0.272 0.165 0.0816 
0.243 0.213 0.138 0.0720 
0.195 0.176 0.120 0.0654 

0,063 I 0.0283 0.0112 0.00465 
0,121 oa490 0.0180 OdlO721 
0~0900 0.0378 0.0141 OGO578 
0.0784 0.0336 0.0127 0.00525 
0.0716 0.03 13 0.0119 OGO496 
0.0668 0.0297 0~0114 oaO477 

0.0325 0.0134 oaO495 oxlO 
0.0448 0.0178 OGO629 OX10246 
0.0379 0.0151 om540 OtM213 
0.0353 0.0142 OX0508 oaO2o 1 
0.0338 0.0137 om490 oao194 
0.0327 0.0133 oaO479 om190 

0.020 I 0.00806 0@0290 oaO111 
0.0239 oaO93 I 0.00322 OIIO123 
0.0218 OGO853 OGO296 om113 
0.0211 OX)0824 0.00286 0aO110 
0.0206 0ao808 0.0028 I 0.00108 
0.0203 000797 0.00277 0aO107 

0.0142 om553 oaO194 0.05727 
0.0151 0.00582 oaO199 0.08751 
0.0144 OX)0556 oGO19o 0.0,718 
0.0141 OGO546 OJ)O187 0.0,706 
0.0140 oaO54 I 003185 0.0,699 
0.0139 oaO537 0~00184 0.0,695 

oao975 0.00384 0.00132 0.0,496 
oaO994 000383 0~00130 0,0,486 
oaO973 oaO375 OGI127 0.09476 
OGO965 003372 OX@126 0.0,472 
oaO960 oao37o 0.00126 0.0,470 
om957 OGO369 0.00125 0.0*469 

OtIO527 OX)0205 0.0,706 0.09265 
om513 OGO198 0.0,667 0.0,248 
oao511 om197 0.09665 0.0,247 
oao51o 0.00196 0,09664 0.0,247 
om509 OGO196 0.0,663 0.08247 
oaO509 OGO196 0.0,663 0.0$247 

3 .: 105 108 

MI655 
0.161 
0.109 
0.0894 
0.0784 
0.0710 

0.0248 
0.0535 
oa402 
0.0353 
0.0326 
0.0307 

oaO174 
0.00275 
OGO226 
om209 
om199 
0+0193 

0.0,690 
0.0,902 
0.03791 
0.0,751 
0.0,728 
0.0,714 

0.0,383 
0.0,438 
0,0:,405 
0.0,393 
0.0,386 
0.0,382 

0.0,248 
0.0,261 
0.0,250 
0.0,246 
0.0,244 
0,0,242 

0.0,167 
0.03166 
0,0,163 
0.0,162 
0.0,161 
0.0,161 

0.0,885 
0.0,841 
0.0,838 
0.0,837 
0.0,836 
0.04836 
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FIG. 3. Uniform heat flux functions. 
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FIG. 4. Periodic heat flux functions. 
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DISCUSSION OF RESULTS 

There are a number of striking features ex- 
hibited by the solutions. It should first be noted 
that the behavior at low Prandtl numbers and 
low Reynolds numbers, or whenever the 
diffusivity function E is small, is asymptotically 
that of the laminar functions. The laminar 
functions S, decrease with n like I/n, but the 
turbulent functions do not decrease as rapidly. 
In fact, for Pr = 30 there is very little difference 
between S, and S,. The higher harmonics are 
therefore of more importance in turbulent flow 
than in laminar flow, particularly at high Prandtl 
and Reynolds numbers, i.e. whenever E is 
large over most of the flow. 

Note that while there is a 50 per cent increase 
in heat flux there is an 80 per cent increase in 
temperature difference. This could pose serious 
problems if not properly considered. To empha- 
size this, suppose we had simply used the local 
heat flux, together with the uniform flux Nusselt 
number, to estimate the peripheral temperature 
variation. We would have obtained 

tw - tm 
I( =0*0112(1 +0*5cose). (244 
4 rdk 

Although the circumferential functions for 
low Prandtl number turbulent flow are essentially 
the laminar functions, the mean functions 
S, differ. This is due to the fact that the circum- 
ferential functions are independent of the 
velocity profile, while the Nusselt number for 

0*016 

0912 

uniform flux does deDend on velocity. It is rather c-t” 
9;r, /k 

0.008 
surprising to observe that the ratio &/S,, which 
in a sense is a measure of the relative importance 
of the first harmonic and the average, is actually 
greater for turbulent flow with Pr = 0 than in 
laminar flow! This means that for a given heat 
flux distribution the circumferential effects will 
be more pronounced in turbulent low Prandtl 
number flow than in laminar flow. Of equally 
striking importance is the observation that, 
except at very high Prandtl numbers, S, is 
larger than So, which means that the effects in a 
tube with marked circumferential variation in the 
heat flux will be quite important. 

PREDICTED FROM 
PRESENT RESULTS 

EXAMPLE 

As an illustration let us consider gas flow in a 
reactor tube at Re = 100 000, and suppose that 
the circumferential heat flux distribution is 

q”(e) = q:(l + 0.5 cos 8). (23) 

Using (17), we find that the local temperature 
difference is given by 

tw - tm 
- N- = s, + 0.5 s, cos e 
4, rdk CW 

= 0.0112 (1 + 0.80 cos e>. (24b) 

PREDICTED FROM 
LOCAL FLUX USING 
UNIFORM FLUX 
NUSSELT NUMBER 

Re= 160,000 
/Jr= 0.7 

OF_ ‘_ ‘_ ‘_ I I J 
O- 3(r 60’ 90’ 120. 150’ MO* 

6 
FIG. 5. A typical example. 

1 

These two predictions are compared in Fig. 5. 
The importance of considering the influence of 
the flux distribution on the heat transfer 
coefficient, as reflected in the functions Sn, 
should be evident. 

CONCLUDING REMARKS 

The present analysis predicts a rather sur- 
prising and important effect of circumferential 
heat flux variation on heat transfer in turbulent 
flow, particularly at low Prandtl numbers. 
However, the average temperature difference, 
computed from the average heat flux, is identical 
with that predicted for no peripheral flux 
variation. The analysis is based on the idealiza- 
tion that the eddy diffusivities for heat in the 
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radial and circumferential directions are identical. 
Some experimental evaluation of this hypothesis 
would seem appropriate. 
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Zusammenfassung-Der Wtirmeiibergang in hydrodynamisch und thermisch ausgebildeter Stramung 
in einem Kreisrohr mit vergnderlichem Wsrmefluss am Umfang wird analysiert. Die Ergebnisse 
gestatten die Bestimmung von TemperaturZ.nderungen bei gleichmlssiger Beheizung in Achsialrich- 
tung und ungleichmlssiger Beheizung iiber den Umfang. Als erstaunliche Schlussfolgerung ergibt sich, 
dass eine Anderung des Wlrmestromes iiber den Umfang bei turbulenter Strijmung manchmal 
griisseren Einfluss zeigt als bei LaminarstrGmung. Ein Beispiel verdeutlicht die Wirkung dieser 

Einfliisse. 


